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Time-dependen t mean velocities and dispersion coefficients are evaluated for a 
general two-dimensional laminar flow. A Lagrangian method is adopted by which a 
Brownian particle is traced in an artificially restructured velocity field. Asymptotic 
expressions for short, medium and long periods of time are obtained for Couette flow, 
plane Poiseuille flow and open-channel flow over an inclined flat surface. A new 
formula is suggested by which the Taylor dispersion Coefficient can be evaluated from 
purely kinematical considerations. Within an error of less than one percent, over the 
entire time domain and for various flow fields, a very simple analytical expression is 
derived for the time-dependent dispersion coefficient 

where D is the molecular diffusion coefficient, DT denotes the Taylor dispersion 
coefficient, 7 stands for the non-dimensional time n2Dt/Y2,  Y is the distance between 
walls and a = ( N +  1)’ is an integer which is determined by the number of symmetry 
planes N that the flow field possesses. For Couette and open-channel flow there are 
no planes of symmetry and a = 1 ; for Poiseuille flow there is one plane of symmetry 
and a = 4. 

1. Introduction 
The present work is concerned with the transport of a Brownian particle by a non- 

uniform flow. 
The diffusion of a small sphere in a Poiseuillian velocity field was first studied by 

Taylor (1953) and Aris (1956), who found that the total dispersion is the result of 
two contributions : the molecular diffusion, and the so-called Taylor dispersion, which 
is produced by the coupling between the Brownian motion and the non-uniform 
velocity field. Doshi, Daiya & Gill (1978) extended Taylor’s solution to include open 
and closed rectangular conduits. 

Recently, Brenner (1980, 1982) has studied the Taylor dispersion phenomenon 
under very general conditions, viewing the solute transport process as occurring in 
an abstract multidimensional phase space. 

The analysis performed in the present article adopts Brenner’s point of view. I n  
particular, the transport process is described from the perspective of a single 
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Brownian solute particle, thus eliminating the irrelevant question of initial solute 
concentration. 

However, unlike Taylor and Brenner, who adopted a kinematic (Eulerian) 
approach.? we characterize the stochastic trajectory of a Brownian particle through 
a dynamical (Lagrangian) viewpoint. This point of view was also shared by Van den 
Broeck (1982), Dewey & Sullivan (1979, 1982) and others. However, the latter 
employed the known solution for the conditional probability distribution of particle 
position in a bounded region (Chandrasekhar 1943 and Budak, Samarski & Tikhonov 
1964) to derive t,he time-dependent dispersion coefficient. In other words, tacitly, the 
solution of Fokker--Plank’s equation for the probability distribution function in a 
boundcd region was prerequisite to any progress in the analysis. In our treatment a 
purely Lagrangian approach is adopted to evaluate the first and second moments of 
the particle position and the explicit solution of the conditional probability 
distribution in a bounded region is not required. 

Since kinematic and dynamical techniques provide alternatives but equivalent 
methods to describe the Brownian motion, they will lead to the same results, namely 
to the same values for the mean global particle velocity and the total dispersivity 
coefficient. 

Finally, the general time-dependent velocity and dispersion of particles in a fluid 
flowing in a two-dimensional duct are discussed. Asymptotic expressions are 
obtained for three particular cases: Couette flow, Poiseuille flow, and an open flow 
over an inclined flat plate. Three-dimensional problems are discussed in a subsequent 
paper, Part 2, where the flows in rectangular closed and open ducts are addressed as 
particular cases. 

2. Statement of the problem 
A rigid particle is immersed in a fluid flowing in the x-direction, which is stationary 

in time and uniform along x. 
Assume that the condition of local equilibrium is fulfilled, namely (i) a so-called 

averaging timescale t, can be defined, which is much shorter than the macroscopic 
timescale and much longer than the correlation time of the Brownian velocity. (ii) 
when time is spanned t.hrough the t ,  timescale the particle is in equilibrium with the 
surrounding fluid, i.e. it does not dissipate macroscopically. According to (ii) no 
external force besides the hydrodynamic interaction acts on the particle ; moreover 
the condition ( i )  states that in the t ,  timescale, variations in the flow field are not 
perceived. 

Thus during a span of time of order t ,  the particle rotates randomly innumerable 
times, without having any preferential orientation. That means that in the t ,  
timescale the particle behaves as if i t  were isotropic,$ with drag coefficient 2. 

Let us consider the motion of one particle. I ts  random position is described by the 
coordinates x, y and z of any of its points, where x, y and z form an orthogonal 
coordinate system. 

Since in the t, timescale the inertial force is negligible, the Langevin equation in 
the x-direction reads 

(1) ZlW) - V ( y ( t ) ,  4411 = fW> 
t I n  a recent article, Dill & Brenner (1983) applied a mixed kinematic-dynamical method, but 

they concluded that  the kinematic approach offers the most direct route of solution. 
1 For this reason. in the kinematic theory of gases, the probability function of the gas molecules 

in their phase space is independent of orientation of the molecules (see Lifschitz & Pitaevski 1981). 
This, however, is incorrect for particles very close t o  the boundaries. 
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where V(y, z )  is the velocity of the incident flow, while the Brownian force f ( t )  satisfies 
the following statistical conditions at  local equilibrium (see, for example, Van 
Kampen 1981; Mauri & Haber 1983): 

<f(t)> = 0, (‘La) 

( f ( t ) f ( t+7))  = 2K1’26(7), ( 2 6 )  

Here K is Boltzmann’s constant and I’ is the absolute temperature. 
The y- and z-coordinates of the particle’s position satisfy Langevin equations 

similar to (1) with V = 0. This results in a free diffusion process in the y- and z- 
directions. 

3. Two-dimensional Taylor dispersion - general approach 
Let us first consider the case of a two-dimensional velocity field V(y) with 

0 < y  < Y .  This case includes most (but not all) of the ingredients of three- 
dimensional cases and is easier to analyse. 

Substitution of (2) into (1) yields 

<W) = <V(Y)) = <V(YOfAY))> (3) 

where yo is the known position a t  time to = 0 of the particle and Ay is the 
displacement of the particle after time At = t-to. The foregoing mean velocity can 
be evaluated by 

y-Yo 

(V(YO+AY)) = j-yo ~ ( Y o + A Y ) ~ ( Y o + A Y :  AtlYO)d(AYL (4) 

where P(yo + Ay ; At I yo) is the probability density of locating a particle a t  position 
y o + A y  after a time period At given that the initial position of the particlc is yo. 

Similarly, from (1) and ( 2 b ,  c), one obtains for the velocity autocorrelation 

(k(t2) k ( t l ) )  = 2 W A t )  + <V(yz) v ( ~ i ) ) ,  (5) 

where At = It,-tJ, D = K T / Z  is the molecular diffusivity, while 
Y Y  

( V ( Y 2 )  V(Y1)) = j j V(Y2)  V(Y1) P(yz;  t 2 ,  y1; t ,  I Yo) dy, dy,. (6) 
0 0  

Here P(y, ; t,, y,;  t, I yo) is the probability density of locating the particle a t  position 
y1 after a time period t ,  and at position yz after a time period t, given the particle was 
initially positioned at yo. If t, > t ,  > 0 and the process is Markoffian, 

P(Yz ; tZ,Yl; tl I Yo) = P(Y2 ; t2 I Y1; 4 )  R Y l ;  tl I Yo) 

= P(Y, + Ay,; At, I Y1) P(y0 + 4 1  ; At, I Yo), 
where Ayz = y2-y1, AY, = y1-y0, At2 = b-4.  

Hence, 
Y-Yo 

-yo 

<V(Y2) V(Y1)) = 1 V(Y0 + AYl) P ( Y 0  + 4 7 1 ;  A 4  I yo) d(Ay1) 

Y-Y O-AY 1 
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for t ,  > t,. Similar expressions can be obtained for the case where t ,  < t,. Similarly, 
higher moments of the velocity profile can be obtained utilizing the relation between 
probability densities for Markoffian processes, namely, 

P ( y n ;  t n ,  ~ n - 1 ;  t n - l . . . Y l ;  t ,  I YO) 

= P(yn  ; t n  I ~ n - 1 ;  t n - l ) P ( ~ n - l ;  tn-1 I Yn-z ; t n - z ) . . . ' (~ l ;  ' 1  I YO), 

where t, > t,-l > . . . > t, > to. Consequently only a single two-point conditional 
probability distribution is required to evaluate (4) and (6). If, howcver, the mean 
velocity or higher velocity moments are sought for a large numbcr of particles placed 
initially at various yo positions, the initial distribution P(yo)  is also needed. 
Generally, this distribution is a priori given and we shall thereafter assume it to be 
1/ Y (particles uniformly distributed at the initial position). In  this case the ensemble 
mean velocity and the velocity autocorrelation are (denoted by double angular 
brackets) : 

(<V(Y)> = +? dY0 J Y - " O  V(Y0 + AY)P(YO + At I Yo) d(AY)> ( 8 )  
-Yo 

l Y  
(( V(YJ  V(Y*))) = r s, dY0 JIro V(Y0 + A Y l )  wl+ 4 1  ; At1 I Yo) d(AY,) 

Y--Y,-AY, 

-?40-A"1 x J V(Yl+ AY2) P(Y, + A?/,; At, I Y1) d(Ay2). (9) 

The foregoing integrations rely heavily on the yet unknown and complex two-point 
conditional probability. For an unbounded velocity field, a simple Gaussian 
distribution could be applied, 

P(y+ Ay ; At 1 y) = (4nDAt)-i exp 1 - (Ay)'/4DAt], (10) 

since no external velocity components exist in the y-direction and the molecular 
diffusion mechanism prevails. 

In  our case, however, t.he particlc is bounded by the conduit walls. consequently, 
the Gaussian formula is inadequate and boundary conditions a t  the walls must be 
specified. A possible condition is that  the particle bounces off the walls and no 
deposition occurs. In  this case the probability of a particle reaching a position 
y1 = y o + A y  after a time period At equals the sum of the probabilities of a particle 
reaching positions y l ,  yz, y3, etc. in an, unbounded jk ld  (see figure 1). These locations 
are multiple mirror imagcs of y1 with respect to the y = 0 ttnd y = Y planes.? Hence, 
integrating the velocity profile (or any other function of y defined in 0 < y < Y )  over 
all possible positions of a bounded y-domain is  identical to integrating over an  inJinite y- 
domain with a ,velocity Jield periodically extended to inJinity such tha t  its semi-period i s  
Y and y = 0 (or y = Y )  is a symmetry plane. 

Thus, instead of deriving the complex probability distribution for the bounded 
domain and then integrating over a finite domain, the Gaussian distribution can he 
used if we simply expand the velocity profile by a cosine Fourier serics 

t This notion was devised by Chandresekhar (1943) aid Oppenheim & Mazur (1964) t o  derive 
the conditional probability distribution for a particle in a bvundrd quiescent fluid. Here we employ 
the same idea not for the probability distribution hut rather to  the velocity field. 
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FIGURE 1. The extended velocity distribution. 

and integrate over an infinite y-domain. Here 

n7c 
Y n = y ,  

and the zero harmonic is 

where V is the mean velocity of the fluid and 

are the amplitudes of the higher harmonics. 

3.1. The mean axial velocity and displacement of a particle 
Based on the analysis of the previous section, the mean velocity of a particle initially 
at yo is 

(V(Y)) = r-yo ~ ( Y o + A Y ) ~ ( Y o + A Y ;  At lyo)d(Ay)  
-yo 

03 

= ( 4 ~ D A t ) - i  2 Vn 

= C Vn exp [ - y i  DAt] cos ( y n  yo) = V + C Vn exp [ - y i  DAt] cos ( y n  yo), 

C O S Y ~ ~ ( Y ~ + A ~ )  exp [- ( A Y ) ~ / ~ ~ A ~ ]  d(Ay) J-w03 m 

n=O 

m 

n=O 

where a formula in Gradshteyn & Ryzhik (1965, p. 410) was used to carry out the 
integration. For long time periods this result coincides with that observed by 
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Griffiths (1911) aiid Taylor (1953). Since when At + GO the sum in (15) dies out, the 
mean velocity of a particle is independent of its initial position yo and is identical to 
the mean velocity of the fluid. Consequently, the ensemble mean velocity (( V(y))) 
would be unaffccted by the initial probablity distribution after a long time period. 
If a uniform initial distribution is assumed, the ensemble average is 

for all times. It is quite remarkable to notice that for this particular case only the 
ensemble mean yiclds a vonstant at  all times. A pcrtinent timcscale in the foregoing 
case is Y2/z2L) ,  approximately the time a particle will take to reach the walls by 
molecular diffusion. 

It is useful to define a non-dimensional time variable based on this timescale, 

by which r > 1 and 7 < 1 pertain to ‘long’ time periods or ‘short’ time periods 
respectively. The mean distance travelled by a particle along x can casily be 
calculated by the following integration : 

The ensemble average for an initial uniform probability distribution is clearly 

for all times. Nonetheless, non-uniform initial distributions introduce a constant 
error. For example, if we decide to trace a small blob of particles located initially at 
yo = iY  only even harmonics would survive in (18) and 

3.1.1. Asymptotic short- and Zon,g-time solutions 

derived from the exact expressions of the previous section. 
An asymptotic solution for the mean velocity and displacement can now be 

For short times it can easily be shown that 

namely, the velocity of a particle initially positioned at yo coincides with the external 
velocity before lateral diffusion takes place. Correspondingly thc displacement is 

( ~ ( t ) )  = tV(yo). 
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For long times, however, the mean displacement of a small blob of particles 
positioned initially at yo = iY is 

which deviates from the simple Yt expression by a term decreasing linearly with 
time. Hence introducing a small centrally located Brownian blob and measuring the 
total displacement of the particles introduces a time-dependent error that can be 
estimated from (21). 

To elucidate this result we consider three simple examples: (i) Couette flow, (ii) 
plane Poiseuille flow, (iii) open-channel flow over an inclined flat plate. 

(i)  Couette flow 

V(y) = 2 h / Y ,  

(iii) Open-channel flow over an inclined plate 

( 2 2 )  

For Couette flow, no deviation from the mean value vt occurs given that the initial 
location of the blob coincides with the location of the mean external velocity. 
However, a small deviation from the mean value vt exists for the second and the 
third cases, where the last is four times smaller. In figurc 2(u-c), equation (18) is 
evaluated for various yo locations and velocity profiles. Generally, the flatter the 
velocity profile the smaller the deviation from vt that  is expected (as can be verified 
from figure 2u) .  Figure 2 ( a )  depicts the displacement for long times. Figure 2 ( b )  
describes explicitly the time dependence of ( x ( t ) )  for Yoiseuille flow. Figure 2 (c) 
indicates that  the temporal variation of ( x ( t ) ) / v t  - 1 is proportional to (1 - ~ - ~ ' ) / 7  

for 0 < 7 < co with only a small error introduced a t  the walls and the midsection of 
the flow. Generally, for not too badly shaped velocity profiles (V, = O ( n P )  q > a) ,  
one can show from (18) that  the temporal variation of the displacement can be 
represented by the expression 

(25) 
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which is in good agreement with the exact solution. The factor a is discussed in a 
broader sense in $3.4 where it is used to describe the temporal variation of the 
dispersion coefficient. Note that the expression (25) does not depend on the initial 
position yo of the particle. 

3.2. The velocity uutocorrelation 

Before calculating the dispersion coefficient, the integral in ( 7 )  must be evaluated. 
The arguments we used in the previous section are still valid and the integral 

can be replaced by an unbounded integral with a cosine Fourier expansion of the 
velocity field and a Gaussian probability distribution to yield 

cc 

vn + c. vn e-n2(rz-T1) cos ( y n  yl). 
? L = l  

Hence 

n = l  

x P(Yo+AY,; At, I Yo) d(AY1) 

for t, > t , .  The first integral is similar to (4); thus 

J -yo 

cc 

V;  + vn 2 vn eP271 cos ( y n  yo). 
n=l 

The second integral can be evaluated as before, only this time COB (y,  y)  V(y) must 
periodically and symmetrically be extended to infinity, with the same period Y and 
symmetry with respect to y = 0 or y = Y .  It can easily be shown that a product of 
any two periodic functions satisfying the foregoing conditions results in a periodic 
function of the same family. Since 

00 

~ 0 s  (yn Y) and C VTn ~ 0 s  ( ~ m  Y) 
m=O 

possess these properties the second integral yields 

m 

x exp [ - 81 d(Ay,) + Vo C V, C 2 ' 2  cos fy, yo) 
n = l  
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(see Gradshteyn & Ryzhik 1965, p. 480.) Hence for 72 > 71 > 0 we have 

(a(7,) 

S .  Haber and R. Mauri 

cc 

= 2D8(7, -71) + vi + vo vn cos (7% yo) (ePnzr1 + e-n2rz) 
n = l  

1 "  = 
+- c c vn vm e-fi'(72-71) [e-(n-m)'T, cos ( y  n-m yo) +e-(n+m)271 c o ~  (Y,+, yo)], (27) 

2 n=1 m = l  

and a similar expression for 71 > 7 p  > 0 (indices 1 and 2 should be interchanged). This 
result is exact and determines the time-dependent autocorrelation for the velocity of 
a Brownian particle initially located at  yo. The ensemble average for an initially 
uniform distribution is a drastic simplification of ( 2 7 ) ,  namely 

(28 )  
1 "  

( ( i ( T ~ i ( 7 ~ ) )  = 2 ~ 8 ( 7 , - 7 ~ ) +  v:+- c V: e-nzIT2-T11 
2 n = l  

for all 72,71 > 0. 
This important result is recovered from (27) for any initial probability distribution 

if 71 + co and 72-71 is finite. It could also be recovered if to start with we had 
assigned for the probability distribution P(yo + Ay, ; Atl I yo) the value 1/ Y in (9). 
Physically it means that after a long time t ,  the particle samples evenly all locations 
and its initial position yo is of no consequence. 

3.3. The dispersion coeficient 

The dispersion coefficient can be obtained directly from the velocity autocorrelation 
by utilizing the following time integration : 

( ~ ' ( ( t ) )  = { 1 i ( t l )  dt 4 t 2 )  dt,) = s' [ ( 4 t l )  a:(&)) dt, dt,. (29) 
0 0  

If we define a time-dependent dispersion coefficient as follows : 

only (29) needs to be evaluated. (We preferred this form since it is easier to compare 
with experiment.) By the same token an ensemble dispersion coefficient can be 
defined as 

(31) 
1 

a t )  = 5 [((x"(t))) - ((4t))>". 

The dcfinition (30) is useful if a small blob is positioned initially a t  a certain location 
yo and sampled after a relatively short time period. However, both D ( t )  and &t) are 
expectcd to possess an identical form for long time periods. 

Introducing (27) into (29) we obtain 
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Hence 

m+n m + 2 n  

The ensemble dispersion coefficient for an initially uniform probability distribution 
is a much simpler expression since all terms including cos ( y n  yo) vanish : 

3.4. Asymptotic short- and long-time dispersion coeficients and the approximate 
analytic expression 

The analytical expressions for Ds and b can now be examined so that simplified 
asymptotic expressions can be derived for short and long time periods. If wc retain 
terms inversely proportional to r and neglect all other exponentially small terms, the 
medium- time dispersion coefficicnt is 

+ (exponentially small terms in r ) ,  ( 3 5 )  
and 

p2y2 33 

D = D-- +(exponentially small terms in 7). (36) 

For very large r ,  Taylor's solution is recovered as a particular case: 
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and the initial position yo does not affect the results. However, for medium time 
periods yo enters the solution and its effect is depicted in figure 3 (a ,  6 )  for Couette, 
plane Poiseuille, and open-channel flow over an inclined plntc. 

The Taylor dispersion coefficient for the foregoing cases is: 

Couette flow 

Poiseuille flow 

The first two results are identical to those obtained by Van den Broeck (1982). The 
Taylor dispersion coefficient for the last case is four times larger than the second case 
and the largest dispersion coefficient is associated with the Couette flow, which is the 
‘steepest ’ case. 

It is interesting to note that the Taylor dispersion coefficient (37) can bc obtained 
directly from the velocity distribution via the following simple formula : 

( 3 Y b )  where 

The proof is easy, using the cosine Fourier expansion for V(y). This result 
substantiates the notion that a ‘flat’ velocity profile yields a small dispersion 
coefficient. However, not the fluctuations themselves but their local mean v’ is of 
importance. The dispersion coefficient can be viewed as the product of the mean 
square of 2)’ (used as a characteristic velocity) and the characteristic time Y 2 / D  i t  
takes a particle t o  sample all lateral positions by molecular diffusion. 

1 
V’(Y) = 7 J; ( i 7 ( Y )  - V )  dy. 

For very short times T 6 1 ,  (34) assumes the form 

B(t) = u+gt c v;L+o(t2) 

n=1, z 

= D + t { i J o y  (V(/)-V)2dy}+O(12), (40) 

which indicates a linear growth with time due to convection only. The dispersion 
coefficient can be viewed as a product of the mean square of the velocity fluctuations 
by the elapsed time. 

The following particular cases are addressed : 

for Couette flow 3 2 -  a 1 t v 2  
D = D + t - P  c -==D+-; 

n4 n = 1 , 3  n4 3 

for open-channel flow over an inclined plate 

1 8 -  O0 1 tvz 
b = D + t - V 2  C -=D+-. 

rc4 n = l . 2  n4 5 
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0.11 , I 1 I 1 

0 0.2 0.4 0.6 0.8 1 .o 
Yo1 y 

FIG~JRE 3 ( a )  The effect of the initial location of a particle on the dispersion coefficient for medium 
time periods ( b )  The temporal variation of the dispersion coefficient for an initially uniform 
distribution of particles 

It can be shown from (34) that the time-dependent dispersion coefficient B(7) 
assumes a very simple form according to the following single parameter formula : 

where 

Couettc Poiseuille Open 
U 1 4 1 

error 0.2% 1 Yo 0.4% 

with an error of less than one percent over the entire time domain (0 < 7 < a). 
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The factor a can be evaluated quite simply by the following observation for a not 
too irregular velocity profile. If the velocity profile has no planes of symmetry within 
0 < y < Y ,  then (L = 1 ;  if it has X planes of symmetry within 0 < t~ < Y (e.g. 
l’oiscuille flow possesses one plane of symmetry) then a = (iV+ 1 ) * .  In other words. 
if V, + 0 then o = 1.  If V, = 0 for all rb = 1,2 ,  .... N and IjLVfl + 0 then a = (B+1)’. 

4. Conclusions 
The Lagrangian approach, by which a single particle is traced, proved to be a very 

useful tool to obtain velocity correlations of any order. First- and second-order 
moments were analyscd in detail and a solution is provided for a general two- 
dimensional, bounded velocity profile. Extending the velocity profile periodically 
made is possible to use the simple Gaussian, two-point, probability distribution. It 
also made it possible to decouple the kinematic problem from thc stochastic one. 
Conscquently, all that ,  was needed was to expand the velocity profile by a cosine 
Fourier series. The fundamental solution for the mean velocity and dispersion 
coefficient irrespective of the initial distribution of particles was obtained. The 
introduct.ion of the initial distribution amounts to a simple integration over all 
possible initial locations weighted by an a priori given initial probability dist,ribution. 

Taylor’s dispersion coefficient is obtained as a particular case for very long times. 
It can be derived utilizing a very simple formula (39) which elucidates the physical 
meaning of the dispcrsion coefficient (the product of the mean square of the local 
mean of velocity fluctuations by the time it takes a particle to sample all transverse 
locations by molecular diffusion). For medium time periods, however, the dispersion 
coefficient) is no longer a constant and an additional term is introduced which decays 
linearly with time. For short times, the molecular diffusion is insignificant and the 
results can be explained assuming convection only. Generally, the dispcrsion 
coefficient increases monotonically from its value for short times to its value 
according to Taylor’s formula. For small and medium time periods, the initial 
location of the particle is important and slightly different results will be obtained for 
the mean velocity and dispersion coefficient. These diff’erences will die out for long 
time periods and Taylor’s result will be recovered. 

A detailed analysis for three velocity profiles is carried out. It indicates that a 
‘flatter ’ profile results in a smaller dispersion coefficient. Particular attention is given 
to two initial cases: the uniform initial distribution of particles vis-h-wis the local 
Dirac-delta-function distribution. For the first case, most results simplify sub- 
stantially : the dispersion coefficient assumes a very simple generalized analytic form 
(4%) which deviates from thc exact solution (34) hy less than one pcrcent for all 
times. The second case makes it possible to calculate ensemble mean vclocitics and 
diffusion coefficients for various initial probability distributions by means of a simple 
integration. 

The parameter a defined in (42) can be used to predict the temporal variations of 
both the displacement and the dispersion cocfficient over the entire time domain with 
an excellent accuracy. The derivation of a is purely kinematical and depends only on 
the number of symmetry planes that the flow field possesses. For LY symmetry planes, 
u = (h+ 1)’  for not too irregular velocity profiles (namely, = O(n-4) y 2). 
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